

Predictors of Mortality Among Patients with Leakage Following Gastric Perforation Repair: Case Series and Recommendations from A Limited Resource Setting in Western Uganda

Jeannot Baanitse^{1,2}, Joshua Muhumuza^{1,2}, Franck Sikakulya^{1,2} and Edwin Musinguzi^{1,2}

¹Department of Surgery, College of clinical medicine and dentistry, Kampala International University, Ishaka-Uganda

²Department of Surgery, Fort Portal Regional Referral Hospital, Fort-Portal, Uganda

*Corresponding author:

Franck Sikakulya,
Faculty of Clinical Medicine and Dentistry,
Department of Surgery, Kampala International
University Western Campus, Ishaka-Bushenyi,
Uganda

Received: 10 Jan 2026

Accepted: 22 Jan 2026

Published: 13 Feb 2026

J Short Name: CTMCCR

Copyright:

©2026 Baanitse Munihire Jeannot. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and build
upon your work non-commercially

Keywords:

Leaked Repair; Gastric Perforation; Mortality Predictors; Recommendations; Modified Graham's Patch; Case Series

Citation:

Baanitse Munihire Jeannot, Predictors of Mortality Among Patients with Leakage Following Gastric Perforation Repair: Case Series and Recommendations from A Limited Resource Setting in Western Uganda. Current Trends in Med and Clin Case Rep® 2026; V15(1): 1-7

1. Abstract

1.1. Introduction

Peritonitis originating from perforation of a hollow viscus deserves special attention, more so when a repair failure from a previous emergency laparotomy results in leaked repair.

1.2. Materials and Methods

We prospectively followed up and analyzed the medico-surgical outcomes of 8 patients who underwent graham patch repair following perforated gastric peptic ulcer and managed in the department of surgery between 30 April to 15 July 2024 at Fort-portal regional referral hospital in western Uganda.

1.3. Results

This prospective study aimed to assess the outcomes of Graham patch repair for perforated peptic ulcer disease (PPUD) in a low-resource setting. Among 8 patients, 5 (62.5%) developed postoperative leaks. Key risk factors for leaks included delayed presentation (over 48 hours), immunosuppression, anemia, and elevated creatinine levels. The Mannheim Peritonitis Index (MPI) was >21 in all patients, with 60% scoring >26, indicating a high risk of mortality. Mortality occurred in 3 out of 5 patients with leaks.

1.4. Discussion

Peritonitis following gastric or duodenal perforation carries a high risk of mortality, especially after failed repairs. Contributing factors included anemia, renal dysfunction, and immunosuppression. The lack of laparoscopic services further limited effective management. Early diagnosis and improved perioperative care are essential to reduce these poor outcomes in resource-limited settings.

1.5. Conclusion

Early leak detection, early surgical intervention, and better pre-operative management are critical to improve patient outcomes in a limited resource setting in Uganda.

2. Introduction

Gastroduodenal perforation (GDP) is a highly lethal surgical emergency with previously reported a significant mortality as high as of 10–40% [1, 2]. Worldwide, approximately 250,000 deaths are related to peptic ulcer disease (PUD), of which 70% are accounted for by GDP [1]. PUD is the most common etiology of GDP, which is prevalent in both sexes regardless of age. This may be related to smoking and the use of ulcerogenic drugs [3]. Primary open repair with pedicled omental patch remains the mainstay of treatment, although a laparoscopic approach, first described in 1990 [4], has also been widely adopted [5]. The modified Graham patch has thus become universally accepted due to its simplicity, ease of execution, reduced operation time and overall reduction in adverse postoperative outcomes (2, 5, 6). However, its major drawback is related to postoperative leakage and subsequent generalized peritonitis (1, 3-7).

Various studies including randomised controlled trials and subsequent meta-analyses have compared the two techniques (open modified Graham patch and laparoscopic); similar morbidity and mortality were observed [6, 7]. A recent prospective study demonstrated a figure of eight primary closure with omental flap reinforcement to be more superior than Graham's omentoplasty (plugging) in terms of decrease leaked repair rate in perforations <2 cm in diameter [8]. Poor surgical outcome has been linked to perioperative shock, treatment delays>24 h, larger perforation size, old age and the presence of major co-morbidity [9].

Rather than engaging in search of more elaborate procedures with less leakage rates after repair, strategies and studies to improve understanding of the complex clinic-pathologic elements and technical errors associated with high leaked repair rates will be salutary [5, 7, 8].

A fast and less invasive procedure is particularly relevant and preferred in a resource-constrained setting like ours where patients commonly come to hospital late, often in shock, and with high American Society of Anesthesiologists scores (III-V).

The aim of this study was to analyze the various predictors of mortality after leaked repair (Modified Graham Patch) of GD perforation and document or assess the different techniques of management and outcome of established cases of leaked repair in our setting. We are reporting a series of 5 cases of leaked repair of GD perforation patient and their outcome managed in a limited resource setting.

3. Case Series

We prospectively followed up and analyzed the medico-surgical outcomes of 8 patients who underwent Modified Graham patch repair following perforated gastric peptic ulcer and managed in the department of surgery between 30 April to 15 July 2024 at Fort-portal regional referral hospital in western Uganda. Only the 5 patients who have leaked repair were included in our study according to inclusion criteria.

Demographic profile, past medico-surgical history, clinical presentation, laboratory parameters (Table 1), preoperative parameters analyzed (Table 2). Prognostic factors, Mannheim peritonitis index (MPI) [10]. Were recorded accordingly (Table3). Surgery details and intraoperative findings (type of surgical repair, size of perforation, location of the perforation), and outcome was analyzed (Table 4) described below.

Patients were followed up regularly in surgical ward every day, with clinical examination and hemogram levels every 2 days. Abdominal X-ray and ultrasound scan were done for all patients, and a non-contrast abdomen CT scan was performed only for 1 patient and showed air under the diaphragm with dilated bowel (Figure 1). There were five patients who fulfilled our inclusion criteria with age range from 17-60 years; 1 female and 4 males. One patient had a negative *H. pylorus*, and other four positive *H. pylori*. No patient had a gastric mass. Only one histopathology

was positive for malignancy in the 45-year-old male patient. All patients were referred from other hospitals and among them 3 came after the initial operation had already been done (exploratory laparotomy performed then referred for further management after severe SSI discovered on days 7 post- operative, before the second laparotomy at the referral hospital). All patients were on medication for *Helicobacter pylori* infection before the perforation, two taking pylor kit orally (clarithromycin 250mg, Lanzoprazole 30mg, and tinidazole 500mg) and other three patients on oral omeprazole capsule 20mg for long duration.

Three (3) with abdominal distension. Location of the perforation is shown in table 4 with others parameters. All patients had gastric perforation and the modified Graham patch was performed during the first laparotomy (Gastric repair). At the second laparotomy, 3 of them underwent again direct Modified Graham patch after refreshing edges of the perforation, and 2 underwent modified Graham patch after 7 days of delayed abdominal wound closure using the Bogota technique.

In the post-operative follow up, the 2 patients who survived, were managed with oral pylor kit (clarithromycin 250mg, Lanzoprazole 30mg, and tinidazole 500mg) for 7 days, and long-term medication of oral omeprazole 20mg for 2 months and these patients improved. The Mannheim Peritonitis Index (MPI) is a scoring system with prognostic value among patients with peritonitis, especially predicting mortality [10, 12]. The MPI (Table 3) was applied along with other clinical and parameters recorded. Prediction was categorized into 3 groups: i) score ≤ 20 (low risk), ii) Score 21-29 (moderate risk) iii) score ≥ 30 (High risk). Further resuscitation and ICU care was given as and when was necessary. Patients were followed up postoperatively till the outcome i.e. mortality, morbidity or discharge [10, 11, 12]. The MPI takes into account age, gender, organ failure, cancer, duration of peritonitis, involvement of colon, and extent of spread and character of the peritoneal fluid. Patients with a score exceeding 26 were defined as having a high mortality rate. Outcome and clinical course of those studied patients were reviewed and analyzed.

**Pylor Kit: is a combination medicine used in the treatment of peptic ulcer disease by relieving the symptoms (it combines lansoprazole, clarithromycine and tinidazole).

Table 1: Laboratory parameters of cases on admission before the second Laparotomy.

Lab parameters	Patient				
	Patient one	Patient two	Patient three	Patient four	Patient five
Age	45Year	40Year	17Year	23Year	60Year
Sex	Male	Male	Female	Male	Male
Hemoglobin, g%	7 g%	6 g%	7 g%	9 g%	7.5 g%
White blood cells/mm ³	21 000 cells /mm ³	16 500 cells /mm ³	17 500 cells /mm ³	18 900 cells /mm ³	22 000 cells /mm ³
Platelet/Microliter of blood	62 000 platelet/ Microliter	100 000 platelet/ Microliter	160 000 platelet/ Microliter	170 000 platelet/ Microliter	120 000 platelet/ Microliter

Creatinine mg/dL	1.8 mg/dL	2.3 mg/dL	3 mg/dL	1.4 mg/dL	3.2 mg/dL
ESR mm/Hour	92 mm/ hour	112 mm/ hour	56 mm/ hour	110 mm/ hour	14 mm/ hour
HIV	Positive	Positive	Negative	Positive	Positive
RBS mg/dL	117 mg/dL	106 mg/dL	86 mg/dL	131 mg/dL	152 mg/dL
<i>H. pylori</i>	Positive	Positive	Negative	Positive	Positive
Histopathology	Gastric cancer (adenocarcinoma)	Benign	Benign	Benign	Benign

RBS: Randomized blood sugar, *H. Pylori*: *Helicobacter Pylori*, ESR: Erythrocyte sedimentation Rate.

Table 2: Pre- operative parameters.

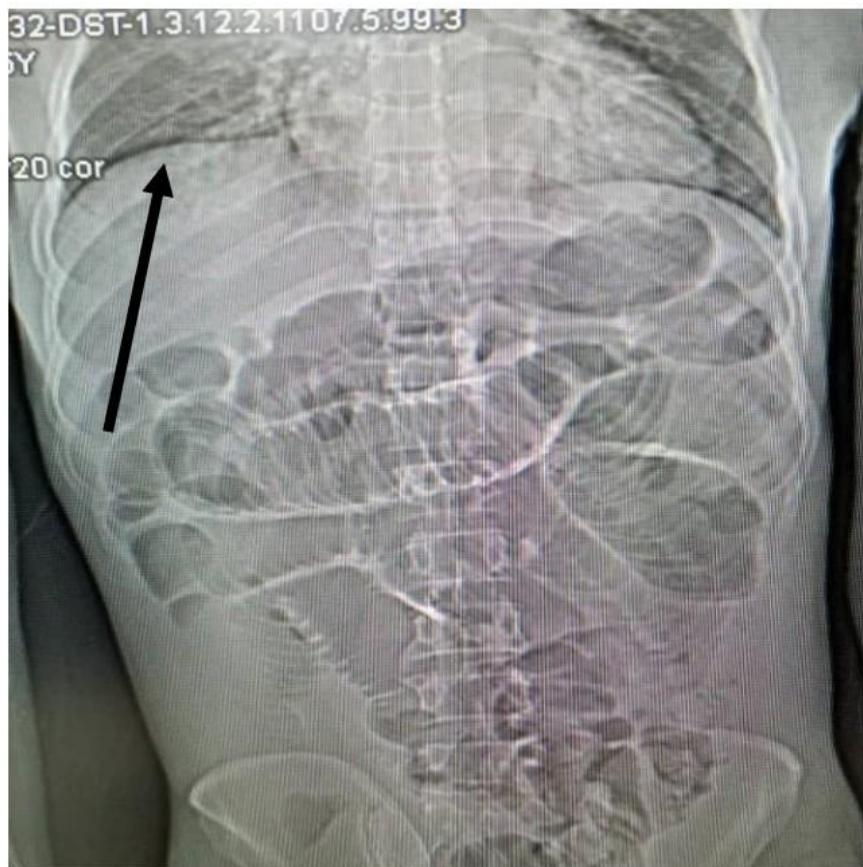
Parameters	Patient				
	Patient one	Patient two	Patient three	Patient four	Patient five
Days spent before the second laparotomy surgery (discovering leakage)	3 days	3 days	6 days	4 days	5 days
Shock before the second laparotomy	Yes	Yes	No	No	No
SSI	Yes	Yes	No	Yes	Yes
MPI*	37	42	22	24	36
Chronic disease apart PUD	Yes	No	No	No	Yes
Previous surgery	No	No	No	No	Yes
Previously on Pylor Kit**	Yes	Yes	No	No	Yes
Referred from another hospital	Yes	No	Yes	Yes	No
First sign observed	Fever, abdominal distension	ECF	Fever, abdominal distension	Enterico-cutaneous fistula	Abdominal distension
Vital signs (Temperature, Heart rate, blood pressure, Respiratory rate and SPO2)	Instable	Instable	Stable	Stable	Instable
Level of the first operator	Surgeon	Medical officer	Medical officer	Resident in general surgery	Resident in general surg

SSI: Surgical site infections, PUD: peptic ulcer disease.

Table 3: Mannheim Peritonitis Index (MPI).

Risk factor	Weightage, if any
Age > 50 years	5
Female gender	5
Organ failure *	7
Malignancy	4
Preoperative duration of peritonitis > 24 hours	4
Origin of sepsis not colonic	4
Generalized peritonitis	6
Exsudates	0-12 (clear, cloudy or purulent and fecal)
Clear	0
Cloudy, purulent	6
Fecal	12

*Definition of organ failure: kidney: creatinine >117 μ mol/L, urea >167 μ mol/L, oliguria <20 ml/h, for lung PO_2 <50 mmHg, pCO_2 >50mmHg.


Table 4: Intra- operative findings.

Parameters	Patient				
	Patient one	Patient two	Patient three	Patient four	Patient five
Leakage location	Antrum	Body	Fundus	Fundus	Body
Skin closure, Bogota or all layers	Bogota bag technique	Bogota bag tech- nique	All layers closure	All layers closure	Bogota bag technique
Used of abdominal drain	Yes	yes	No	No	No
Level of the second operator	Surgeon	Surgeon	Surgeon	Resident in surgery	Surgeon

Table 5: Post- operative data (Post the second laparotomy).

Parameters	Patient				
	Patient one	Patient two	Patient three	Patient four	Patient five
Hospital stays (days)	13	11	7	17	5
Post op pylor kit	No	No	Yes	Yes	No
Post op Omeprazole	Yes	Yes	Yes	Yes	Yes
Antibiotics given	IV PISA and IV metronidazole	IV PISA and IV metronidazole	IV Ceftriaxone and IV metronidazole	IV PISA and IV metronidazole	IV PISA and IV Metronidazole
Outcome post the second laparotomy	Death	Death	Discharged home	Discharged home	Death

PISA: Piperacilline- Tazobactam, IV: Intravenous.

Figure 1: A non-contrast abdomen CT scan showing air under the diaphragm with dilated bowel.

4. Discussion

Peritonitis caused by the perforation of a hollow organ requires particular attention, especially when a previous emergency laparotomy has failed, leading to a leak at the repair site. Although the traditional pedicled omental patch remains the standard method for repairing gastroduodenal perforations due to peptic ulcer disease, reported rates of repair leaks range from 8% to 16%, with mortality rates reaching 10% to 15% [13, 14]. In contrast, our study found that 60% of patients with a failed initial repair died following a second attempt at repair. Leakages after laparotomy for perforated peptic ulcer disease (PPUD) are a widespread issue, though the incidence varies by geographic location [5, 15]. Reported rates in various studies range between 3% and 30% [5, 15, 16, 17].

Re-laparotomy after a failed repair carries higher surgical risks and is often technically challenging [6, 14]. In a Danish study of 726 PPUD cases, 17.1% required re-laparotomy, with persistent leakage as the leading cause [5]. Leak rates vary globally: 14.0% in Ethiopia [15], 11.3% in Pakistan [16], 10.9% in India [17], and as low as 4.0% in Iran [18], while higher rates have been reported in eastern DR Congo [19]. In our study, 62% (5/8) of patients who had Modified Graham patch repair experienced leakage, likely due to the inclusion of only Modified Graham's patch cases.

Effective management of PPUD complications depends on various factors, including surgeon expertise, access to laparoscopic services, and patient demographics [20, 21]. In our setting, only open surgery is available due to lack of laparoscopic equipment and trained personnel. The average age of patients with repair leaks in our study was 36 years, compared to 53.3 years in similar cases reported from Pakistan [16], suggesting a younger affected population in our cohort.

Although our study found no significant association between age and repair leakage (Table 1) [22, 23], several clinical factors were linked to poor outcomes. Intra-abdominal infections remain particularly challenging in patients with anemia, elevated creatinine, immunosuppression, delayed presentation, sepsis, or shock [23–25]. In our cohort, 60% had a Mannheim Peritonitis Index (MPI) >26, indicating high mortality risk, and all had MPI >21, reflecting at least moderate risk [10, 11, 19, 26]. Immunosuppression (4/5 patients) and delayed surgical consultation (>48 hours in all cases) were strongly associated with repair leaks and mortality (3 deaths out of 5 leaked repair). Similar findings have been reported in studies from Pakistan, Egypt, Nigeria, Ethiopia, and the Netherlands [6, 15, 17, 22, 27].

Despite ongoing debate around re-laparotomy for leaks [16, 28], multiple factors consistently correlate with poor outcomes: older age (mean 36 years in our study, range 17–60), malignancy (1/5), immunosuppression (4/5), preoperative hypotension (2/5), anemia (Hb <9 in all), elevated creatinine (all), and *H. pylori* positivity (4/5) [3, 29]. Key predictors of mortality after repair leaks include shock at admission, HIV/AIDS, age over 60 years,

and delayed treatment (>24 h) [30–32]. Gastro-duodenal ulcers carry a 2–3 times higher mortality risk, rising to 50% in the elderly due to comorbidities and diagnostic delays [6, 31]. Friable tissues and failed primary repairs often make re-suturing difficult, making resection a safer alternative in select cases [32, 33]. CT imaging is better to detect postoperative leaks than to leave an abdominal drain to assess the output [31, 32]. The modified Graham patch remains widely used for its simplicity, short operative time, and favorable outcomes [6]. In low-resource settings like ours, simple closure with omental patch is the standard approach. Yet, despite advances in anesthesia and surgical techniques, postoperative morbidity remains high (20–50%), with mortality rates of 3–40% [8, 34, 35].

5. Literature Review

Graham's omental patch (omentopexy) has long been the standard, favoured for its simplicity and short operative time in emergency repair of perforated peptic ulcers; numerous reviews and cohort studies report acceptable overall outcomes but note persistent leak and mortality risks that vary widely by setting (reflecting patient condition, delay to surgery, and local resources) [36, 37]. Comparative cohort data indicate leak rates commonly between ~4% and >10% and mortality spanning single digits to >20% in sicker cohorts, highlighting that technique alone does not eliminate risk when patients present late or in shock [38, 39].

Trials and prospective comparative series that directly evaluate Graham versus modified Graham techniques generally find small but clinically relevant differences in some perioperative outcomes. Randomized and quasi-randomized studies report comparable overall safety but suggest modified Graham approaches (which include variations such as anchoring sutures, altered omental positioning, or reinforcement stitches) can reduce operative time, postoperative pain, hospital stay, wound complications, and, in some series, leak rates [40, 41]. However, many studies are single-center, underpowered for mortality endpoints, and heterogeneous in how the “modified” technique is defined, limiting firm conclusions about survival benefits [40, 41]. Beyond direct technique comparisons, recent prospective work has explored alternative closure methods (e.g., figure-of-eight primary closure with omental flap) and context-specific choices (omentopexy, plugging, or resection for large/friable defects), with some trials showing lower leak rates for certain modified closures in small perforations (<2 cm) [8, 36]. The overall evidence therefore supports that (a) modified Graham variants can improve short-term morbidity and resource use in many centres, (b) choice of repair should be individualized by perforation size, tissue quality and patient risk, and (c) high-quality multicenter randomized trials are still needed to determine whether any technique confers a reproducible mortality advantage across diverse, resource-limited settings [38, 39].

6. Conclusion

This study highlights that mortality following leaked repair of

gastric perforations remains high in low-resource settings, primarily driven by preventable risk factors such as delayed presentation, anemia, elevated creatinine, immunosuppression, and high Mannheim Peritonitis Index scores, remain major contributors to poor outcomes. The findings emphasize the urgent need for early diagnosis, improved perioperative care, and risk-based management to reduce adverse outcomes. Addressing systemic challenges, including limited diagnostic capacity, inadequate surgical expertise, and delayed referrals, is critical to improving survival rates in patients with perforated peptic ulcer disease (PPUD) in similar contexts.

Strengthening the surgical ecosystem through early detection, multidisciplinary collaboration, and improved perioperative support can substantially reduce morbidity and mortality in resource-limited environments.

7. Key Clinical Recommendations

Adopt routine use of the Mannheim Peritonitis Index (MPI) to guide perioperative decision-making and identify high-risk patients requiring intensive monitoring.

Optimize preoperative patient stabilization, correcting anemia, renal dysfunction, and sepsis before surgery whenever possible.

Strengthen surgical capacity, community-level awareness and referral systems by improving access to diagnostic imaging, laparoscopic tools, and continuous training for surgeons in resource-limited settings.

Then ensure **early recognition and prompt surgical intervention** for suspected gastric perforations to minimize the risk of repair leaks and mortality. Educating primary healthcare workers and the public about early warning signs of peptic ulcer perforation and complications can shorten prehospital delays and improve early presentation rates.

Introduce nutritional and infection control programs: Routine nutritional screening and early enteral or parenteral supplementation, along with strict perioperative antibiotic stewardship and infection prevention practices, can reduce postoperative complications.

Develop multidisciplinary “acute care surgery teams”: Collaboration among surgeons, anesthetists, internists, and critical care nurses should be institutionalized to provide coordinated care for complex peritonitis and leak cases.

Establish regional surgical audit and morbidity review systems: Regular case audits and data sharing across regional hospitals can identify common technical errors, improve decision-making, and foster quality improvement in emergency surgery.

References

1. R Okidi, VD Sambo, Ogwang. Thirty-day postoperative outcome of patients with non-traumatic gastroduodenal perforations in southwestern Uganda Tropical Doctor. 2020; 50(1): 15-19.
2. K Søreide, K Thorsen, S Di saverio, F Catena. Management of Perforated Peptic Ulcer BT - Acute Care Surgery Handbook: Volume 2 Common Gastrointestinal and Abdominal Emergencies, Springer International Publishing, Cham. 2016; 107-115.
3. Gisbert JP and Calvet X. Review article: Helicobacter pylori-negative duodenal ulcer disease. Aliment Pharmacol Ther. 2009; 30: 791-815.
4. L K Nathanson, DW Easter A. Cuschieri, Laparoscopic repair/ peritoneal toilet of perforated duodenal ulcer, Surg. Endosc.1990; 4(4): 232-233.
5. M Wilhelmsen, M H Møller, S Rosenstock. Surgical complications after open and laparoscopic surgery for perforated peptic ulcer in a nationwide cohort, Br J Surg. 2015; 102 (4).
6. K Thorsen, TB Glomsaker, A Von Meer, K Søreide. Trends in diagnosis and surgical management of patients with perforated peptic ulcer, J. Gastrointest. Surg. 2011; 15(1329-1335).
7. AC Critchley, AW Phillips, SM Bawa. Gallagher, Management of perforated peptic ulcer in a district general hospital. Ann R Coll Surg Engl. 2011; 93(2011): 615-619.
8. Vidyarthi SH, Jangir MK, Singh A. A prospective study for comparison between graham's omentopexy v/s figure of eight closures in cases of peptic perforation. International Journal of Surgery. 2020; 4(2): 142-145.
9. Buck DL, Vester-Andersen M, Møller MH. Danish Clinical Register of Emergency Surgery. Surgical delay is a critical determinant of survival in perforated peptic ulcer. Br J Surg. 2013; 100: 1045-1049.
10. Shashi PM, Tiwary SK, M Mishra. An introduction of Tertiary Peritonitis, J Emerg Trauma Shock. 2014; 7(2): 121-123.
11. Hartl W, Kupfinger D. Secondary peritonitis. Zentralbl Chir. 2011; 136(1): 11-7.
12. Chromik AM, Meiser A, Hölling J. Identification of patients at risk for development of tertiary peritonitis on a surgical ICU. J Gastrointest Surg. 2009; 13: 1358-1367.
13. Chalya PL, Mabula JB, Koy M, McHembe MD, Jaka HM. Clinical profile and outcome of surgical treatment of perforated peptic ulcers in Northwestern Tanzania: A tertiary hospital experience. World J Emerg Surg. 2011; 6: 31.
14. Levi A, Gross DJ, Egelko A, Roudnitsky V. A Novel Approach to Managing Giant Duodenal Ulcer Perforations: Minimizing Ostomies, Maximizing Decompression. A Case Report. Surg Case Rep (Tallinn). 2019; 2(5): 1-3.
15. Teshome H, Birega M, Taddese M. Perforated Peptic Ulcer Disease in a Tertiary Hospital, Addis Ababa, Ethiopia: Five Year Retrospective Study. Ethiopian J Health Sci. 2020; 30(3): 363-70.
16. Rajput M, Rani S, MH M. Analysis of risk factors contributing to re-leak of duodenal ulcer perforation: Experience of surgical closure by Graham's Patch. Pak J Surg. 2010; 26(3): 217-20.
17. Abdallah HA, Abd-El-Aal AS. Comparative study between Graham's omentopexy and modified-Graham's omentopexy in treatment of perforated duodenal ulcers. Egyptian J Surg. 2018; 37(4): 485-9.
18. Maghsoudi H, Ghaffari A. Generalized peritonitis requiring re-operation after leakage of omental patch repair of perforated peptic ulcer. Saudi J Gastroenterol. 2011; 17(2): 124-8

19. Munihire Jeannot B, Matungulu JN, Ali A, Muhumuza J. Tertiary peritonitis, severe sepsis needs early diagnosis and treatment in countries with limited resources, a case series. *Ann Surg Case Report.* 2023; 6(4): 1083.
20. Tarasconi A, Coccolini F, Biffl WL, Tomasoni M, Ansaloni L, Picetti E. Perforated and bleeding peptic ulcer: WSES guidelines. *World J Emerg Surg.* 2020; 15: 3.
21. Bowling K, Balcombe A, Rait J, Andrews S. Technique to manage persistent leak from a prepyloric ulcer where a distal gastrectomy is not appropriate. *J Surg Case Rep.* 2015; 2015(8): 103.
22. Bertleff MJ, Lange JF. Perforated peptic ulcer disease: a review of history and treatment. *Dig Surg.* 2010; 27(3): 161-9.
23. Gokakin AK, Atabay M, Koyuncu A, Topcu O. Peptic Ulcer Perforation in Elderly: 10 years' Experience of a Single Institution. *Int J Gerontology.* 2016; 10(4): 198-201.
24. Sartelli M, Chichom-Mefire A, Labricciosa FM, Hardcastle T. The management of intra-abdominal infections from a global perspective: 2017WSES guidelines for management of intra-abdominal infections. *World J Emerg Surg.* 2017; 12: 29.
25. Chichom-Mefire A, Fon TA, Ngowe-Ngowe M. Which cause of diffuse peritonitis is the deadliest in the tropics? A retrospective analysis of 305 cases from the South-West Region of Cameroon. *World J Emerg Surg.* 2016; 11: 14.
26. Neri A, Marrelli D, Scheiterle M, Di Mare G, Sforza S, Roviello F. Re-evaluation of Mannheim prognostic index in perforative peritonitis: prognostic role of advanced age. A prospective cohort study. *Int J Surg.* 2015; 13: 54-9.
27. Ibrahim A, Arunkumar A. Comparison of Surgical Techniques for Gastro Duodenal Perforation Closure: A Prospective Study of Falciiformligament Patch Versus Graham Omental Patch. *IOSR J Dent Med Sci.* 2017; 16(12): 44-50.
28. Bader FG, Schroder M, Kujath P, Muhl E, Bruch HP, Eckmann C. Diffuse postoperative peritonitis – value of diagnostic parameters and impact of early indication for relaparotomy. *Eur J Med Res.* 2009; 14(11): 491-6.
29. Sanjanwala SS, Thati VN, Rohondia OS, Rambhia SU. Comparison of operative procedures for re-leaks duodenal perforation: a cross-sectional analysis from a tertiary care hospital in a developing country. *Int Surg J.* 2016; 3(3): 1314-7.
30. E'gin S, Gokcek B, Y Silta M, Hot S, Karak D. Improvement of a duodenal leak: Two-way vacuum-assisted closure. *Ulus Travma Acil Cerrahi Derg.* 2019; 25(1): 89-92.
31. Weledji EP, Ngowe NM. The challenge of intraabdominal sepsis. *Int J Surg.* 2013; 11: 290-5.
32. Nansubuga M, Kirunda S, Wesonga AS. Clinico-Pathological Pattern and Early Post-Operative Complications of Gastro-duodenal Perforations at Mulago Hospital Kampala- A Prospective Cohort Study. *East Cent Afr J Surg.* 2015; 3-10.
33. Treuheit J, Krautz C, Weber GF. Risk Factors for Postoperative Morbidity, Suture Insufficiency, Re-Surgery and Mortality in Patients with Gastroduodenal Perforation. *J Clin Med.* 2023; 12: 6300.
34. Lau JY, Sung J, Hill C, Henderson C, Howden CW, Metz DC. Systematic review of the epidemiology of complicated peptic ulcer disease: incidence, recurrence, risk factors and mortality. *Digestion.* 2011; 84: 102-13.
35. P Sivaram, A Sreekumar. Preoperative factors influencing mortality and morbidity in peptic ulcer perforation, *Eur J Trauma Emerg Surg.* 2018; 44: 251-257.
36. Weledji EP. An overview of gastroduodenal perforation: pathophysiology and management. *Frontiers in Surgery.* 2020; 7: 573901.
37. Velasco-Velasco F, Llerena-Velastegui J. Advances and results in omental patch repair of gastrointestinal perforations: A narrative review. *Surg Pract Sci.* 2024; 19: 100261.
38. Wang YL, Chan XW, Chan KS, Shelat VG. Omental patch repair of large perforated peptic ulcers ≥ 25 mm is associated with higher leak rate. *J Clin Transl Res.* 2021; 7(6): 759-766.
39. Tullavardhana T, Chartkitchareon A. Does Omental Plugging Provide a Better Surgical Treatment Outcome than the Omentopexy Technique in the Management of Giant Peptic Ulcer Perforation? A Meta-analysis of Comparative Studies. *Oman Med J.* 2022; 37(6): e439.
40. Kidwai R, Ansari MA. Graham patch versus modified graham patch in the management of perforated duodenal ulcer. *Journal of Nepalganj Medical College.* 2015; 13(1): 28-31.
41. Khare AK, Patel KP, Chopra AK, Goyal P. Graham's patch omentopexy versus modified Graham's patch omentopexy in duodenal perforation—A comparative study. *Asian Journal of Medical Sciences.* 2024; 15(8): 156-161.